Wednesday 6 October 2021

Design in concrete and steel

 



Faculty of Science, Engineering and Computing

 

Postgraduate Modular Scheme

April/May Examinations 2020/2021

Level 7

MODULE:           CE7112 Design in concrete and steel

DURATION:       3 hours + 2 hours

 

General instructions

 

1.            This examination/assessment was designed to be completed within the duration specified on the front cover (3 hours).  However, Canvas will remain open for a further two hours to allow additional time for submission and any technical difficulties.  

 

2.            If you experience technical difficulties, eg. access and upload issues, or identify a potential error in a question please email the module leader T.Donchev@kingston.ac.uk who will be available throughout the exam.

 

3.            You must not collaborate with anyone on this exam/assessment, it should be wholly your own work.  Your work will be checked for evidence of plagiarism and/or collusion using Turnitin.

 

Submission Guidance

 

1.        You should submit your answers as a single Word, pdf or Excel document via Canvas.  Add your ID to the top of each page and indicate the questions you have answered on the first page of your document.

 

2.        If you include graphics in your answer, these should be embedded into the document (eg. a photograph of a hand-drawn graphic).  The source of any copied and pasted figures should be cited.

 

3.        Please make sure to save your work regularly and leave plenty of time to upload your work not later than ½ hour before the deadline.  Late submissions will not be marked.

 

Instructions to Candidates

 

                                   This paper contains Four questions

                                         Answer FOUR questions

                                         All questions carry equal marks

 

 

 

Candidates are reminded that the major steps in all arithmetical calculations are to be set out clearly.

 

Design Extracts will not be supplied as this is an open book examination.

 

Number of Pages: 1 – 4

 

 

 

1          Design the steel beam shown in Figure Q1 for Lateral Torsional Buckling (LTB) effects for sagging between points B and C assuming LTB restrains at the supports.  The loading generally consists of two types of Uniformly Distributed Load (UDL), acting between points A and B and points B and C correspondingly. The unfactored UDL for both parts is 25 kN/m permanent load and 20 kN/m variable load. The partial safety factors for both parts of the beam depend on the chosen loadcase. AB part of the beam is 4 m long and BC part is 1.5 m.

 

Perform the following design calculations based on EC3:

 

(a)       Choose an appropriate loadcase for maximum sagging moment to occur at the span AB and calculate the loads at Ultimate Limit State (ULS) using appropriate load factors.  Calculate the support reactions. Draw shear force and bending moment diagrams for the above mentioned loadcase indicating all significant values.                    

(6 marks)

 

(b)       Choose an appropriate S275 steel Universal Beam (UB) section which may be used to resist the LTB effects between points A and B. Check the classification of the section.

                                                                                          (5 marks)

 

 

(d)       Check the LTB effects between the supports at ULS assuming laterally restrained compression flange at the supports and at the end of the cantilever. The flanges are free to rotate in plan between the supports.

            Do the calculations only once and indicate do you need bigger or smaller section at the end.

(8 marks)

 

(c)        Check the deflections between A and B according to SLS loading and assuming non-brittle finish for the ceilings.

                                                                                                  (6 marks)

           

 

 

 

 



 

 

 

2     The simply supported frame ABC shown in Figure Q2 is made from steel S275. It is subjected to the following nominal loads: horizontal point load F at the support at point C with magnitude 35 kN as permanent load and 30 kN as variable load. In addition, uniformly distributed load w acting downwards is applied on the horizontal part BC of the frame with magnitude 80 kN/m as permanent load and 65 kN/m as variable load.

 

Assume that the column AB is supported by pinned supports top and bottom and loaded in compression and uniaxial bending. The height of the column is 4m. Check the adequacy of a UC 254x254x132 column for the load effects from simultaneous action of the indicated loading as design values in ULS.

 

Perform the following design calculations based on EC3:

 

(a)       Calculate the design values for bending and compression load effects at the top of the column AB assuming all loads applied simultaneously.                                                                                          (4 marks)

 

(b)       Check the resistance of the existing cross section of the column at point B to bending and compression.                          (6 marks)

 

(c)        Check the buckling resistance of the column BC about the major and the minor axes.                                                                        (5 marks)

 

(d)        Check lateral torsional buckling and combined buckling effects                                                                                                      (10 marks)

 

                                        



 

3      A grade S275 steel beam 406x178x74 UB carries permanent loads and variable loads from two secondary beams as shown in Figure Q3. The beam is laterally restrained at the supports and the secondary beams. Design mineral fibre box protection to give 90min fire performance if the thermal properties of the proposed thermal insulation are as follows:

 

 

 


Figure Q3 All distances are in mm

 

a)    Determine the design bending resistance of the beam at 20ºC temperature and compare with the design load at room temperature.

(7 marks)

 

b)    Determine the critical temperature for the section. As a first iteration assume the critical temperature to be 550ºC. During the heating the variable action is to be considered as a quasi-permanent value where .

 

           (12 marks)

 

c)    Calculate the required minimum thickness of the protection to satisfy the required 90min of fire performance for the critical temperature.

 

 

 (6 marks)

 

 

 

 

 

 

 

 

 

Continued…

4.            A 3-spans continuous beam with a fixed end is shown in Figure Q4a.  The beam carries two uniformly distributed loads and a point load.  The cross section of the beam is made up of a UB strengthened with a plate on the base of the UB as shown in Figure Q4b.  The yield stress of steel is 275N/mm2.

 

(a)          Determine the full plastic moment of resistance Mp of the section.

(5 marks)

 

(b)          Using Plastic Analysis method, investigate all possible collapse mechanisms and determine the actual collapse load and the corresponding collapse mechanism.

(10 marks)

 

(c)          For the collapse load in (b), draw the bending moment diagram showing all significant values.

(10 marks)

            


 

END OF EXAMINATION PAPER

UK assignment helper

Author & Editor

We are the best assignment writing service provider in the UK. We can say it with pride that we tend to perceive our client’s requirements better than any other company. We provide assignment writing service in 100+ subjects.

0 comments:

Post a Comment